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Abstract—Source-free domain adaptation is a crucial machine
learning topic, as it contains numerous applications in the real
world, particularly with respect to data privacy. Existing ap-
proaches predominantly focus on euclidean data, such as images
and videos, while the exploration of non-euclidean graph data
remains scarce. Recent graph neural network (GNN) approaches
can suffer from serious performance decline due to domain shift
and label scarcity in source-free adaptation scenarios. In this
study, we propose a novel method named Graph Diffusion-based
Alignment with Jigsaw (GALA), tailored for source-free graph
domain adaptation. To achieve domain alignment, GALA employs
a graph diffusion model to reconstruct source-style graphs from
target data. Specifically, a score-based graph diffusion model is
trained using source graphs to learn the generative source styles.
Then, we introduce perturbations to target graphs via a stochastic
differential equation instead of sampling from a prior, followed
by the reverse process to reconstruct source-style graphs. We
feed the source-style graphs into an off-the-shelf GNN and intro-
duce class-specific thresholds with curriculum learning, which can
generate accurate and unbiased pseudo-labels for target graphs.
Moreover, we develop a simple yet effective graph-mixing strategy
named graph jigsaw to combine confident graphs and unconfident
graphs, which can enhance generalization capabilities and robust-
ness via consistency learning. Extensive experiments on benchmark
datasets validate the effectiveness of GALA.

Index Terms—Graph diffusion model, graph neural network,
source-free domain adaptation.

I. INTRODUCTION

GRAPH neural networks (GNNs) have recently demon-
strated superior performance in graph-level representation

learning, which facilitates various graph machine learning prob-
lems. Among them, graph classification aims to predict the labels
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of the whole graphs [1], [2], [3], [4], which has various real-
world applications, such as molecule property prediction [5], [6]
and social network analysis [7], [8]. Typically, these methods
adopt the message-passing mechanism to generate informa-
tive node-level representations [9]. These representations are
subsequently summarized into graph-level representations via
summarization operators for classification.

In spite of the promising performance of GNN approaches,
they typically operate under the assumption that training and
testing graphs come from the same distribution. However, in
real-world applications, this is rarely the case. For example, in
the discovery of novel molecules in unexplored environments,
particularly in response to urgent events, there is often a substan-
tial domain shift from existing training data, resulting in inferior
testing performance. One potential solution is to use graph
domain adaptation methods, which combine GNN with domain
alignment techniques. These methods usually utilize adversarial
learning [10] to implicitly minimize distribution differences, or
use cross-domain graph contrastive learning [11] for explicit
alignment.

However, data privacy has become an important issue in
both daily life and scientific research [12]. This is evident in
the practices of AI companies, which generally release only
pre-trained models rather than the entire dataset. Recent graph
domain adaptation approaches typically require complete access
to both the source and target graphs [11], [13], which can be
impracticable due to privacy regulations. Towards this end, this
paper investigates source-free graph domain adaptation, a prac-
tical but under-explored problem, which adapts an off-the-shelf
source model to unlabeled target graphs without accessing the
source graphs. In addition, our scheme is data-efficient, as we
sufficiently leverages the open-source pre-trained models.

In literature, various works have focused on source-free do-
main adaptation [14], [15], [16], [17], [18]. These strategies usu-
ally employ self-supervised techniques for semantic exploration
in the target domains and conduct domain alignment based on
training statistics and weight matrices. However, these works
often concentrate on normal euclidean data, such as images
and text, while this problem remains under-explored on non-
euclidean graph data. In fact, developing a source-free graph
domain adaptation framework meets two significant challenges.
(1) How to sufficiently align two graph domains without hav-
ing access to the source graphs? The graph samples contain
complicated structures, including various nodes and topolo-
gies [19]. The complicated structures and rich semantics lead
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Fig. 1. A brief motivation of GALA. Previous score-based diffusion models
usually generate new data by sampling from a prior distribution (upper), while
ours GALA transforms the target graphs back to the source domain (lower).

to a hierarchical domain shift, which is difficult to capture [20].
Even worse, we are unable to explicitly align two domains
by minimizing the distribution divergence, since source graphs
are unavailable. (2) How to overcome the label scarcity in the
target domain? In real-world applications, we can only access
limited unlabeled target graphs, since labeling graph-structured
data can be very costly [21]. Previous techniques often adopt
pseudo-labeling for additional supervision. Given the complex-
ities inherent in graph structures, these pseudo-labels probably
contain errors and are skewed toward the dominant class.

To tackle these two challenges, this paper proposes a novel
method named Graph Diffusion-based Alignment with Jigsaw
(GALA), tailored for source-free graph domain adaptation. The
main idea of our GALA is to convert the target graphs into
source-style graphs using a graph diffusion model. Specifically,
we first employ source graphs to train a score-based graph
diffusion model, which connects intricate source graph struc-
tures with a prior distribution using a stochastic differential
equation (SDE). As shown in Fig. 1, we use standard diffusion
models to generate new data from a prior distribution, while we
perturb target graphs using forward SDE, and then reconstruct
source-style graphs using reverse SDE with source styles. In
this way, we bridge target graphs with the source domain in the
protection of data privacy.

In addition, to generate more accurate and impartial pseudo-
labels under label scarcity, we introduce adaptive class-specific
thresholds, which will progressively increase with the spirit of
curriculum learning. Target graphs are regarded as confident if
their confidence scores are above the threshold. To exploit un-
confident graphs, we provide a simple yet effective graph-mixing
method called graph jigsaw, which executes graph clustering
based on community detection to select a subgraph from each
graph. Subsequently, a confident graph and an unconfident graph
exchange subgraphs, much like a jigsaw puzzle. Mixed and orig-
inal graphs are assumed to have consistent predictions for model
generalization and robustness. We conduct comprehensive ex-
periments on benchmark datasets and experiments demonstrate

the superiority of the proposed GALA compared with existing
baselines.

To summarize, the contribution of this work is as follows:
� We explore a practical but under-explored problem of

source-free graph domain adaptation. To the best of our
knowledge, we are the first to explore this problem.

� We propose a novel framework named GALA, which
transforms target graphs into source-style using a graph
diffusion model to mitigate the domain shift in data.

� To overcome the label scarcity, we not only introduce
adaptive class-specific thresholds with curriculum learning
to learn accurate and unbiased pseudo-labels, but also
utilize graph jigsaw with consistency learning for model
generalization and robustness.

� Extensive experiments on a range of benchmark datasets
demonstrate the superiority of the proposed GALA com-
pared with various competing baselines. Extensive ablation
studies and visualization further validate our superiority.

II. RELATED WORK

In this section, we briefly review three related topics, i.e.,
graph classification, graph domain adaptation, and source-free
domain adaptation.

A. Graph Classification

Graph neural networks (GNNs) have remarkable performance
in graph classification by mapping graph-structured data into
embedding vectors [3], [4], [22], [23]. Among various GNNs,
message passing neural networks have been the most preva-
lent [9], [24], which update node representations via neighbor-
hood aggregation. Recently, graph kernels have been incorpo-
rated into GNNs to learn from various substructures such as
motifs and paths [25]. To generate graph-level representations,
various graph pooling operators are proposed using the attention
mechanism [26], reinforcement learning [27], and graph clus-
tering [28]. In addition, various semi-supervised methods [29]
are proposed for data-efficient graph-level learning [30]. Despite
extensive progress, existing methods mostly assume that training
and test graphs come from the same distribution, which is usually
not the case in real-world applications. Therefore, we adopt
diffusion adaptation to transform target graphs into source-style
graphs effectively.

B. Graph Domain Adaptation

Graph domain adaptation has attracted substantial interest in
recent research [31], [32], [33], [34], [35], [36], [37], [38], [39].
Early efforts typically focus on node-level adaptation [13], [40],
[41], [42], where knowledge is transferred from a labeled source
graph to an unlabeled target graph. These strategies usually
utilize improved GNN encoders and adversarial learning for
domain-invariant representations. For instance, UDA-GCN [40]
uses dual graph encoders to explore semantics from multiple
perspectives and then combines them with the attention mecha-
nism. In contrast to node-level, graph-level adaptation would en-
counter numerous graphs with complex distribution shifts [43],
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[44]. The recent CoCo [11] combines graph kernel networks
with GNNs and employs a coupled graph contrastive learning
framework to tackle domain disparities. StruRW [45] utilizes a
structural reweighting method to address the domain shift caused
by graph structure and node attributes. SA-GDA [21] uses spec-
tral augmentation and dual graph convolutional networks for
graph domain adaptation. UDANE [46] leverages the transfer-
able node representation to transfer knowledge across domains.
P-Mixup [47] enforces the target domain progressively moving
to the source domain for effective domain transfer. However,
these works generally require access to both source and target
graphs, which could be impractical in real-world scenarios with
strict privacy restrictions. To this end, we investigate source-free
graph domain adaptation, which adapts an off-the-shelf model
to an unlabeled target domain.

C. Source-Free Domain Adaptation

Source-free domain adaptation seeks to transfer a model
trained on a source domain to an unlabeled target domain
without access to source data. Existing approaches can be es-
sentially categorized into self-training approaches and domain
alignment approaches. Self-training approaches typically em-
ploy pseudo-labeling and mutual information maximization to
discover semantics from unlabeled target data [14], [15], [48].
For instance, SHOT [15] generates prototypes of classes in the
hidden space, which can be used to train the nearest centroid
classifier for unlabeled target data. In contrast, domain alignment
approaches attempt to explore stored batch statistics and weight
matrices for reduced distribution shift [16], [49]. However, these
methods are designed for visual data, which performs poorly
on non-euclidean graph data. Towards this end, we propose a
diffusion-based source-free graph domain adaptation method,
which transforms target graphs back to the source domain via a
graph diffusion model.

III. PRELIMINARIES

A. Problem Definition

We denote a graph as G = (V,E) where V denotes nodes
and E denotes edges. Each graph is associated with a node at-
tribute matrixX ∈ R|V |×df

where df is the attribute dimension.
We denote a labeled source domain as Dso = {(Gso

i , ysoi )}Ns
i=1

whereGso
i stands for the i-th source graph and ysoi is its label. An

unlabeled target domain is Dta = {Gta
j }Nt

j=1 where Gta
j denote

the j-th target graph. While two domains share the same label
space, they have different data distributions. In the problem
of source-free graph domain adaptation, we initially pre-train
neural network models using source data and subsequently learn
a model to predict the labels of target graphs. Importantly, to
safeguard data privacy, the source data remains inaccessible
during the adaptation on the target domain.

B. Graph Neural Networks

Graph neural networks (GNNs) are commonly used to encode
graph-structured data based on a message-passing mechanism.
In particular, given a graphG, we denote the node representation

of v ∈ V at the layer k as h(k)
i and formulate the updating rule

as follows:

h
(k)
S(v) = AGG(k)

({
h(k−1)
u : u ∈ S(v)

})
, (1)

h(k)
v = COM(k)

(
h(k−1)
v ,v

(k)
S(v)

)
, (2)

where S(v) represents the neighboring nodes of v and h
(k)
S(v)

denotes the neighborhood representations for v. AGG(k) and
COM(k) denote the aggregation and combination operators.
Finally, a global pooling function is used to summarize the node
representations into a graph-level representation,

z = GP
({

v
(K)
i

}n

i=1

)
, (3)

in which GP(·) is for global pooling. Finally, we utilize an MLP
classifier with softmax activation, i.e., HEAD(·) to generate
label distributions:

p = Φ(G) = HEAD(z), (4)

where Φ represents the whole graph neural network. In our
setting, we would first train an off-the-shelf GNN model using
source graphs by minimizing the cross-entropy objective as a
preliminary:

Lsource = − 1

|Dso|
∑

Gso
i ∈Dso

log pso
i [ysoi ] . (5)

where pso
i = Φ(Gso

i ) denotes the output of the GNN.

IV. THE PROPOSED APPROACH

A. Framework Overview

This paper introduces GALA for source-free graph domain
adaptation. The model, as illustrated in Fig. 2, does not have
access to source graphs when learning from target graphs. To
solve the problem, we are required to sufficiently align two graph
domains and overcome the label scarcity on the target domain. At
a high level, GALA transforms target graphs into source-style
with a graph diffusion model. Specifically, source graphs are
utilized to learn a score-based graph diffusion model, which will
be fixed to keep the source styles. On this basis, we perturb target
graphs by forwarding a stochastic differential equation (SDE)
and then reconstruct source-style graphs using the reverse pro-
cess. Moreover, we adapt the off-the-shelf GNN model with
class-specific thresholds through curriculum learning. This aids
in generating accurate and class-balanced pseudo-labels for each
target graph. Then, we introduce our proposed GALA in detail
as below.

B. Graph Diffusion Model for Domain Alignment

The principal challenge faced in graph domain adaptation
is the alignment of source and target domains. This becomes
increasingly challenging in our scenarios since we cannot si-
multaneously access the source and target data. Our approach is
to employ a generative model for source-style graphs that can
make precise predictions using the pre-trained GNNs. To achieve
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Fig. 2. Overview of GALA. We employ source graphs to train a score-based graph diffusion model and then transform target graphs into source-style graphs.
Moreover, we introduce adaptive class-specific thresholds to generate confident graphs with pseudo-labels and then utilize graph jigsaw to exchange subgraphs
between graph pairs for consistency learning.

this, we introduce an off-the-shelf graph diffusion model in the
source domain, with the ability to generate graphs with source
style. Subsequently, the target data can be fed into the diffusion
model to generate a source-style graph via the reverse process.

1) Graph Diffusion Model: We first introduce our graph
diffusion model, which reconstructs the graph structure using
an SDE [50], [51], [52], [53]. As the most crucial component,
the graph structure is expressed via the adjacency matrix as a
variable from the timestamp 0 to 1 with an interval Δt when
adding noise, i.e., A(t). Then, the SDE for the adjacency matrix
is:

dA(t) = −1

2
β(t)A(t)dt+

√
β(t)dw, (6)

where β(t) is a scalar of adding noise and w is a Wiener
process indicating random noise. The key of an effective dif-
fusion model is to obtain the score function, i.e., the gradient
of the likelihood ∇A(t) log p0t(A(t) | A(0)) where A(t) ∼
p0t(A(t)|A(0)). Here, we utilize a score-based GNN ρ(A(t), t)
to approximate the ground truth by minimizing the following
objective:

LS = Et{λ(t)EA(0)EA(t)|A(0)[‖ρ(A(t), t)

−∇A(t) log p0t(A(t) | A(0))‖22]}, (7)

where λ(t) is a positive weighting function. By minimizing (7)
on the source domain, we can obtain a graph diffusion model
with source styles embedded.

2) Graph-Based Score Function: Different from diffusion
models in computer vision, our approach requires incorporating
graph-structural information during propagation. Combining a
random walk with a message-passing mechanism, we develop
an effective graph-based score function ρ(A(t), t). Specifically,
to better learn structural information, we first discretize the
adjacency matrix and then utilize a random walk to generate

edge representations emn:

Ȧ(t) = 1A(t)>1/2, (8)

e(0)mn = φ([Rmn,R
2
mn, . . . ,R

r
mn]), (9)

whereRk = (Ȧ(t)Ḋ−1(t))k indicates the likelihood of starting
and end points for every k-length walk. r denotes the maximal
random walk length and Ḋ−1(t) is the degree matrix of Ȧ(t).
φ(·) is an MLP to map these likelihoods into the embedding
space. Besides edge information, we also extract node represen-
tations f

(0)
i = [eii,di] where di is the one-hot degree vector,

and then utilize a message passing neural network with to update
fk
i as:

f
(k)
S(v) = AGG(k)

({
f
(k−1)
i : j ∈ S(i)

})
(10)

f
(k)
i = COM(k)

(
f
(k−1)
i ,f

(k)
S(v)

)
. (11)

Finally, we update edge representations as:

e
(k+1)
ij = ˜COM

(k)
(
e
(k)
ij ,f

(k)
i ,f

(k)
j

)
, (12)

where ˜COM
(k)

is a different combination operator to update
the edge representation. After stacking Kd layers, we utilize an
MLP to generate the estimated adjacency matrix.

3) Target Graph Adaptation: By sampling from the prior
distribution, the well-trained graph diffusion model can generate
new graphs carrying source styles. Instead of sampling from
the prior distribution p1(A(1)), GALA adds noise to the target
graphs and then uses the reverse process to endow the target
graphs with source styles. This process only utilizes the trained
diffusion model, effectively addressing the domain shift while
protecting the privacy of source graphs.

Authorized licensed use limited to: Peking University. Downloaded on January 12,2025 at 17:43:26 UTC from IEEE Xplore.  Restrictions apply. 



9042 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 12, DECEMBER 2024

In detail, we perturb the adjacency matrix of the target graph,
which generates noise with target semantics,

A(trecon) ∼ p0trecon(A(trecon)|A(0)). (13)

where trecon is the starting point of reconstruction. Conse-
quently, we utilize an iterative process to alter the noisy input
A(trecon) for reconstruction with the reverse process. The re-
serve SDE can be written as:

dA(t) =

[
−1

2
β(t)A(t)− β(t)∇A(t) log pt(A(t))

]
dt

+
√
β(t)dw, (14)

where w denotes a standard Wiener process for backward.
On this basis, the updating process of the generated adjacency
matrix Ag(t−Δt) can be:

Ag(t−Δt) ∼ p(Ag(t−Δt)|Ag(t)). (15)

In our implementation, the Euler-Maruyama algorithm is em-
ployed to simply the propagation as:

Ag(t−Δt) = Ag(t) +

[
1

2
β(t)Ag(t) + β(t)sθ (A

g(t), t)

]

+
√
β(t)

√
Δtzt, (16)

where zt ∼ N (0, 1). Finally, the adjacency matrix Ag(0) is for
the reconstructed graph, which is denoted as Ĝta

j . In this manner,
we can adapt the target graphs into source-type graphs from a
data-centric perspective, which can facilitate accurate semantics
exploration using the out-of-shelf GNN.

C. Unbiased Pseudo-Labeling With Curriculum Learning

To overcome label scarcity in the target domain, we turn to
pseudo-labeling techiniques. Note that after transforming target
graphs into source-style graphs, we can use the pre-trained
GNN with a fixed threshold to generate target graph pseudo-
labels [54]. However, these pseudo-labels from the pre-trained
GNN could be biased toward the dominant class. Worse still,
GNNs could produce overconfident pseudo-labels due to the po-
tential class competition from normalization operators. To avoid
this, we propose unbiased pseudo-labeling with class-specific
thresholds for accurate and unbiased pseudo-labels. In addition,
a curriculum learning approach is employed, which initially
concentrates on all graph samples and then progressively focuses
on more reliable ones. In other words, we increase the threshold
to reject samples from easy to hard.

Primarily, we generate the label distribution pta
j using the

pre-trained GNN for each source-style target graph Ĝta
j , i.e.,

pta
j = Φ(Ĝta

j ), (17)

where Ĝta
j is the output of the diffusion model. To generate

the rigid and class-balanced pseudo-labels, we first calculate the
confidence distribution for each class and subsequently establish
an adaptive threshold based on the maximum. In formulation,
the confidence of each sample is defined as:

staj = max
c

pta
j [c]. (18)

Then, the maximum confidence scores for class c are:

Mc = max{staj |argmaxc′p
ta
j [c′] = c}. (19)

The adaptive threshold for class c is defined as:

τc = Mc · α(e), (20)

whereα(e) is shared across different classes. Following the spirit
of curriculum learning, we would increase α(e) linearly accord-
ing to epoch number e, which gradually selects graphs with
higher confidence. Consequently, this would yield a collection
of confident target graphs:

C = {Gta
j |c = argmaxc′p

ta
j [c′], staj > τc, }. (21)

The standard cross-entropy loss is minimized in C:

Lsup = − 1

|C|
∑

Gta
j ∈C

log pta
j [ŷtaj ], (22)

where ŷtaj denotes the pseudo-label ofGta
j . Our pseudo-labeling

strategy provides a reliable and unbiased optimization process
with reduced error accumulation.

D. Consistency Learning With Graph Jigsaw

Despite the effectiveness of pseudo-labeling, there could be
a large number of unconfident target graphs without sufficient
exploration. To tackle this, we aim to expand the dataset by com-
bining confident and unconfident graphs. Recently, a number of
works have been developed on graph Mixup [55], [56], which
combines graph representations in the latent space. However,
these methods cannot promise to generate realistic graphs and
are dependent on GNN encoders. In contrast, we employ a
simple yet effective augmentation strategy, graph jigsaw, that
works in the graph space. Graph jigsaw uses a community de-
tection algorithm to derive a small subgraph from each graph and
then exchange them in a jigsaw puzzle mechanism. Finally, we
propose consistency learning to ensure that post-augmentation
predictions remain consistent, thereby enhancing robustness and
generalization.

In detail, we adopt a community detection algorithm, i.e.,
the Louvain algorithm [57] to partition graphs into diverse
clusters. The benefit of this algorithm is unnecessary to decide
the cluster number. Then, we randomly choose a cluster, from
each confident graph Ĝc

j and denote the complementary part

and subgraph as, Ĝc
j,1 and Ĝc

j,2. In parallel, each unconfident

graph Ĝu
k can be segmented into Ĝu

k,1 and Ĝu
k,2. We exchange

semantics by combining Ĝc
j,1 and Ĝu

k,2 to generate augmented

graph Ĝc
j , and Ĝc

j,2 and Ĝu
k,1 would be connected to generate

graph G̃u
k . A detailed example can be seen in Fig. 2.

Then, consistency learning is leveraged to encourage the
mixed graph to yield similar predictions. In formulation, the
learning objective is written as:

Lcon = − 1

|S|
∑

Gta
j ∈S

log p̃ta
j [ŷtaj ]− 1

|U|
∑

Gta
j ∈U

KL(p̃ta
j ||pta

j ),

(23)

Authorized licensed use limited to: Peking University. Downloaded on January 12,2025 at 17:43:26 UTC from IEEE Xplore.  Restrictions apply. 



LUO et al.: GALA: GRAPH DIFFUSION-BASED ALIGNMENT WITH JIGSAW FOR SOURCE-FREE DOMAIN ADAPTATION 9043

Algorithm 1: Optimization Algorithm of GALA.

Input: Source graphs Dso, target graphs Dta,
Output: GNN-based classifier Φ(·)
1: Pre-train Φ(·) using source graphs;
2: Train diffusion model using source graphs by

minimizing (7);
3: for epoch = 1, 2, . . . do
4: Obtain class-specific thresholds using (20);
5: Generate confident target graphs with pseudo-labels

using (21);
6: for each batch do
7: Sample a mini-batch of target graphs;
8: Calculate the loss objective using (24);
9: Update the parameters of GNN through

back-propagation;
10: end for
11: end for

where p̃ta
j is the label distribution of the augmented view and

U = Dta/S are unconfident graphs. Moreover, pseudo-labels
are adopted to supervise confident samples, while the KL di-
vergence of predictions between unconfident graphs and their
augmented views are minimized. Our GALA enjoys the reg-
ularization from consistency learning to learn from extensive
unconfident graph samples, which can further minimize the
information loss.

E. Summarization

In a nutshell, the final loss of training our GALA is summa-
rized as:

L = Lsup + Lcon. (24)

As a preliminary, we adopt an off-the-shelf GNN and graph
diffusion model trained on the source domain. Subsequently,
the loss objective is minimized in the target domain. The overall
algorithm is summarized in Algorithm 1.

Complexity Analysis: We assume that |Dta| is the number of
target graphs, d is the feature dimension, |V |a is the average
number of nodes, W is the reconstruction steps. The compu-
tational complexity of the diffusion is O(Kd|Dta||V |ad2 W ).
The GNN model takes O(K|Dta||V |ad2) where K is the layer
number. Therefore, the complexity of our GALA is O((K +
KdW )|Dta||V |ad2) which is linear to both |V |a and |Dta|.

V. EXPERIMENTS

A. Experimental Settings

Datasets: We perform experiments on real-world benchmark
datasets with source-free domain adaption settings. In order
to demonstrate the performance of our approach in various
scenarios, we conducted experiments on both dataset split and
cross-dataset source free domain adaptation. In ENZYMES,
Mutagenicity, PROTEINS, and FRANKENSTEIN datasets,
we split the data, thereby introducing domain discrepancies.
Then, we perform source-free domain adaptation across the

sub-datasets. As for the COX2 and BZR datasets, we directly
conduct source-free domain adaptation on the sub-datasets as-
sociated with each of them.
� ENZYMES [58] is a bioinformatic data set comprising 600

tertiary protein structures. It constitutes a classic collection
of data rooted in the structural information of biological
molecules and proteins.

� Mutagenicity [59] encompasses a multitude of molecular
structures, each intricately paired with its corresponding
Ames test data, amounting to a total of 4337 molecular
structures.

� PROTEINS [60] contain protein data in graph form, where
each label indicates whether a protein is a non-enzyme.
The amino acids serve as nodes. The edges exist when the
distance between two nodes is less than 6 angstroms.

� FRANKENSTEIN [61] is a composite dataset that amalga-
mates the BURSI and MNIST datasets. Each data sample
is depicted as a graph, with the chemical atom symbols rep-
resenting vertices and the bond types representing edges.

� COX2 [62]. We engage the COX2 and COX2_MD datasets,
consisting of 467 and 303 inhibitors specifically targeting
cyclooxygenase-2. Within these datasets, individual graphs
serve as graphical representations of distinct chemical
compounds. These graphs feature edges annotated with
distance values, while the vertex labels are indicative of
the atom types found in the compounds.

� BZR [62]. We use BZR and BZR_MD datasets, which
consist of 405 and 306 ligands designed to interact with
the benzodiazepine receptor. The process of graph con-
struction employed in these datasets is analogous to that of
the COX2 dataset.

Domain Settings. This work follows the setting of source-free
domain adaptation [15], [48] in the image classification task. The
division of the dataset is executed by using graph density, which
is defined as the ratio of the number of existing edges to the
number of potential edges. It can be calculated as

D =
2|E|

|V |(|V | − 1)
, (25)

where |E| is the number of edges and |V | is the number of
nodes in the graph G. Within each sub-dataset, the ratio of the
training set to the test set is 8:2. Each dataset is split according to
the above instructions, leading to domain discrepancies among
these sub-datasets and subsequently yield inferior cross-domain
performance.

Diffusion models and pre-trained GNNs are trained on the
source domain as off-the-shelf models to simulate real-world
scenarios. The off-the-shelf models adapt to the target domain.
In the adaptation process, only the target domain data is used,
and the source domain data is not available. This is more aligned
with real-world application scenarios.

Baselines: For credibility, we compare GALA with exten-
sive competing baselines, which can be categorized into three
aspects: (a) Graph Neural Networks, including GCN [63],
GIN [64], GAT [65] and GraphSAGE [66]. (b) Graph Semi-
Supervised Methods, including Mean-Teacher [67], InfoGraph
[68] and TGNN [69]. (c) Source-free Adaptation Methods.
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We adopt a recent state-of-the-art source-free domain adoption
method PLUE [18] of image classification. Note that the semi-
supervised methods are designed to utilize both source and target
data. Therefore, the comparison with semi-supervised methods
may not be entirely fair.
� GCN [63] adapts localized first-order approximation of

spectral graph convolution to represent the graph data.
� GIN [64] takes the message passing neural networks for

capturing the different topological structures of graphs.
� GraphSAGE [66] leverages node feature information to

efficiently generate node embeddings for unseen data.
� GAT [65] introduces the attention mechanism, to facilitate

the model focusing on the most informative parts.
� Mean-Teacher [67] is an effective semi-supervised algo-

rithm in the graph domain. The method uses a student to
make predictions and a teacher model to generate train-
ing targets. The teacher model is an exponential moving
average of the student model.

� InfoGraph [68] is a semi-supervised method for GNNs that
uses mutual information maximization to learn represen-
tations of graphs.

� TGNN (Twin Graph Neural Network) [69] is a semi-
supervised approach for graph classification, which con-
tains a message-passing module and a graph kernel module
to explore structural information.

� PLUE [18] is a recent state-of-the-art source-free domain
adaption method for the image classification task, which
proposes to evaluate the reliability of refined labels while
excluding the noisy label. We implement PLUE in graph
classification tasks.

B. Implementation Details

In this passage, we introduce the implementation details of
GALA at different stages. The baseline methods are initiated
with hyperparameters as the corresponding paper and fine-tuned
to achieve the best performance. To mitigate the potential im-
pact of randomness, we employ 5 runs and report the average
accuracy and standard deviation.

Model Training on Souce Domain: We adopt GCN as the
default GNN encoder, with the embedding dimension 64 and
the layer number 3. We use Adam optimizer and a learning rate
of 0.001. We train the model in the source data domain with total
epochs of 100 and batch size of 64.

Diffusion Training on Source Domain: In our graph score
networks, we employ a configuration of 4 message-passing
layers equipped with 8 attention heads. For the estimation of
the final score, we utilize an MLP with 2 hidden layers. The
training of these models is accomplished with the use of an
Adam optimizer, maintaining a constant learning rate of 2e− 5
and batch size of 128. To enhance stability in the parameter
updating process, we also implement the exponential moving
average (EMA) methodology, applying a momentum of 0.9999.
We employ the variance preserve SDE in this work. We utilize
the Euler-Maruyama method, setting δt at 0.001, with 1000
discretization steps for graph sampling during the reconstruction
phase.

Source-free Adaptation on Target Domain: During the tar-
get domain adaptation, we initially perform domain alignment
on the target data using an off-the-shelf diffusion model. The
reconstruction starting point trecon is default set at 0.1. That
means we first add noise from t = 0 to t = trecon, followed by
a denoising process back to t = 0 for domain transfer. Subse-
quently, we employ unbiased pseudo-labeling with curriculum
learning and consistency learning with graph jigsaw for the
domain adaptation. In unbiased pseudo-labeling learning, the
initial setting for the pseudo-label threshold α(0) is 0.95. In
curriculum learning, the confidence threshold α(e) increases
linearly with the epoch e from α(0) to 0.99. In the graph
jigsaw, we dynamically partition graphs into communities using
the Louvain algorithm. Following this partition, subgraphs are
exchanged among confident and unconfident graphs, and the
exchanged subgraphs inherit the edges connecting them from
the original graph.

C. Performance Comparison

Tables I, II, III, IV, and V present the performance of different
methods. We observe the following:

1) Source-free domain adaptation presents a challenging task,
as the inferior accuracy in the target domain, highlights the ne-
cessity of investigating this problem. Both domain shifts and the
unavailability of source data impose constraints on the model’s
capabilities, rendering prior research inapplicable.

2) Semi-supervised methods (e.g., InfoGraph) perform gener-
ally better than source-only methods. Semi-supervised methods
can utilize both labeled data (source domain) and unlabeled
data (target domain). Note that in practical scenarios, it is often
not feasible to access the source data, as only off-the-shelf
models are available. Nevertheless, semi-supervised methods
exhibit poor stability and performance, as the high standard
deviation in experiments. This is attributed to the absence of
consideration for domain shift between the source domain and
the target domain.

3) Source-free method PLUE performs better than the other
approaches, especially in tackling the challenges posed by more
complex domain adaptation tasks. Despite PLUE being the
state-of-the-art method for source-free domain adaptation in
image classification tasks, it is noteworthy that this method is
not devised for graph data and substantial domain shifts. Con-
sequently, there still remains a need for further improvements.

4) GALA has yielded significant improvements, both within
source-free domain adaptation on the split sub-datasets and
cross-datasets. Notably, GALA demonstrates an average im-
provement of 5.3% in cross-dataset experiments when compared
to the best-performing compared baseline methods. Further-
more, GALA exhibits improvements, especially in cases of
poorly performing domain adaptation sub-tasks.

The improvements in GALA can be attributed to two primary
factors: data transformation and domain transfer. 1) Diffusion-
based data transformation allows target data to transform to the
source domain while preserving semantics. This mitigates the
adverse effects of domain shift and facilitates better predictions
in the source domain. 2) The integration of graph jigsaw and
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TABLE I
THE CLASSIFICATION RESULTS (IN %) ON ENZYMES (SOURCE → TARGET)

TABLE II
THE CLASSIFICATION RESULTS (IN %) ON MUTAGENICITY (SOURCE → TARGET)

TABLE III
THE CLASSIFICATION RESULTS (IN %) ON PROTEINS (SOURCE → TARGET)

TABLE IV
THE CLASSIFICATION RESULTS (IN %) ON FRANKENSTEIN (SOURCE → TARGET)
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Fig. 3. Visualization of diffusion adaptation on ENZYMES. E0 and E3 are subsets of ENZYMES, with E0 being sparser and E3 being denser. The diffusion
process can reconstruct the graph while preserving semantics. As E3 → E0, the graphs become sparser. As E0 → E3, the graphs become denser.

Fig. 4. Visualization of diffusion adaptation on PROTEINS. P0 and P3 are subsets of PROTEINS, with P0 being sparser and P3 being denser. The diffusion
process can reconstruct the graph while preserving semantics. As P3 → P0, the graphs become sparser. As P0 → P3, the graphs become denser.

TABLE V
THE CLASSIFICATION RESULTS (IN %) ON COX2 AND

BZR (SOURCE → TARGET)

proposed pseudo-label methods significantly helps the model
learn more robust representations during the adaptation process,
thereby enhancing the adaptation of the model.

D. Visualization

In order to further analyze the effectiveness of GALA, we
investigate the two newly proposed modules, i.e. the graph
diffusion and the graph jigsaw.

Graph Diffusion: To validate the effects of diffusion-based
data adaptation, we performed visual verification on the target
domain data in ENZYMES and PROTEINS. As shown in Figs. 3
and 4, diffusion-based data adaptation makes the target graph
more compatible with the source model. Graph diffusion enables
domain transfer for graph data and the generation of source-style
graphs.

Graph Diffusion modifies the graph structure of a target
domain by adding or removing edges between nodes while
preserving the original semantic information of the graph. This
allows the target graph to become more similar to the source
domain, facilitating more accurate predictions by models trained
on the source domain.

Graph Jigsaw: We visualize the graph jigsaw process. As in
Fig. 5, it can be observed that our proposed graph jigsaw is able
to adaptive select subgraphs and perform exchanges between
confident and unconfident graphs. In graph jigsaw, we randomly
chose a subgraph Ĝc

j,2 from each confident graph Ĝc
j , and ex-

changed with an unconfident graph Ĝu
k to generate an augmented

graph Ĝc
j . The visualization elucidates the effective execution

of graph jigsaw, like a jigsaw puzzle game, by employing the
copy-and-paste mechanism with subgraphs.

The exchange of subgraphs and establishment of connections
generate new graph data, which helps explore data samples.
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Fig. 5. Visualization of graph jigsaw on ENZYMES. Graph jigsaw, combined with consistency learning, leverages unlabeled target data to enhance the
generalization capacity.

TABLE VI
ABLATION STUDIES OF DIFFERENT SUBMODULES

With graph jigsaw, the model learns more robust representa-
tions by consistency learning between the original graphs and
post-exchange graphs, therefore enhancing the generalization
ability on the target domain.

E. Ablation Study

We investigate the effectiveness of GALA in three aspects: the
graph diffusion model for adaptation (GDM), unbiased pseudo-
labeling with curriculum learning (UPCL), and consistency
learning with graph jigsaw (CLGJ). The average classification
results on two datasets are summarized in Table VI and we have
four results. First, it can be observed that the whole model M4

achieves the best performance. As such, adaptation is required
from both data and models. The collaborative interaction of these
three modules can enhance the effectiveness. Second, differ-
ent components can play distinct roles. GDM appears to be a
notably effective component (M1), suggesting that data adap-
tation serves a crucial role in handling distribution shifts, the
significant challenge in source-free domain adaptation. Third,
the role of UPCL varies in magnitude, depending on the bias
present in pseudo-labels. plays a more important role in EN-
ZYMES (M2), indicating a more serious biased of pseudo-
labels. Nonetheless, consistently, they all play a significant role
in the overall result of source-free domain adaptation. Fourth,
we can observe that CLGJ shows relatively consistent efficacy

across both datasets (M3), which represents the gain from con-
sistency learning with graph jigsaw.

In addition, to empirically analyze the effectiveness of UPCL,
we conducted studies on the ENZYMES (E0→E3), focusing
on the confidence set selection in the target domain. As shown
in Fig. 8, the traditional pseudo-labeling methods can generate
biased confidence sets that are skewed toward easier categories,
which negatively affects adaptation in the target domain. In
contrast, our approach to unbiased pseudo-labeling shows sig-
nificant effectiveness in preventing such biases.

F. Scalability Analysis

Following to the experimental setup in Section V-B, we ana-
lyze the scalability of our proposed GALA using the PROTEINS
dataset, as shown in Fig. 9. The experiments are conducted on
a single RTX 3090 GPU, where we sample data from different
scales of graph data and report the adaptation latency per batch.
The results show that our method exhibits high efficiency as
graph size increases, outperforming other methods. This high-
lights the ability of our method to achieve efficiency and high
performance when handling large-scale graph data.

G. Sensitivity Analysis

Analysis of pseudo-label threshold: We first vary the ini-
tial pseudo-label threshold α(0). Combined with class-wise

Authorized licensed use limited to: Peking University. Downloaded on January 12,2025 at 17:43:26 UTC from IEEE Xplore.  Restrictions apply. 



9048 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 12, DECEMBER 2024

Fig. 6. Sensitivity analysis of the pseudo-label threshold.

Fig. 7. Sensitivity analysis of the reconstruction timestamp.

Fig. 8. Validation on ENZYMES. Pseudo-labeling with a fixed threshold can
be biased towards easy classes (left). Our unbiased pseudo-labeling can provide
more unbiased pseudo-labeling (right).

Fig. 9. Scalability analysis. We evaluate the adaptation latency for a single
batch across different graph sizes and methods.

accuracy and training epochs, α(0) determines the confidence
threshold. Its impact on final average accuracy is investigated in
Fig. 6. We test α(0) from 0.91 to 0.99 with uniform sampling
intervals. Asα(0) from 0.91 to 0.95, the final accuracy improves
on all datasets. This indicates that relatively clean pseudo-labels
benefit model adaptation. However, when α(0) is further in-
creased to 0.99, there is a decrease in accuracy. This suggests
that an excessively strict pseudo-label threshold can limit the
model’s ability to learn from the target domain. Therefore, in
order to make a balance between these two considerations, we
take α(0) = 0.95 as the default value, enabling us to maximize
the utilization of the information within the target domain.

Analysis of reconstruction timestamp: We investigated the im-
pact of reconstruction timestamp trecon, which is the end point of
forward SDE and the start point of reverse SDE. trecon influence
semantic information preservation during reconstruction. We
vary trecon in [0.05, 0.1, 0.2, 0.3, 0.4] to investigate the potential
effects arising from diffusion reconstruction. As shown in Fig. 7,
the optimal average accuracy is achieved when the trecon is set
to 0.1. As trecon increases, the overall accuracy rises, which
shows the necessity of employing data domain transfer based
on graph diffusion for the target graph data. However, as trecon
continues to increase, we observe varying degrees of decline
in overall accuracy. This suggests that an excessive alteration
of the information in the target graph data can generate side
effects, impacting the original semantic information within the
graph. Insufficient diffusion leads to inadequate data adaptation,
while excessive diffusion hinders the preservation of graph
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semantics. They both result in an adverse impact on accuracy.
This analysis reveals that transforming target graphs into source-
style graphs carries a potential risk of information loss due to
over-reconstruction. GALA can transfer graph semantics with
limited information loss, which can improve the graph domain
adaptation performance.

VI. CONCLUSION AND FUTURE WORKS

This paper studies source-free domain adaptation, a practical
scenario in graph domain adaptation, where the source data is
inaccessible during adaptation, resulting in the domain shift and
label scarcity of the target domain. We propose GALA to address
these problems. GALA utilizes graph score-based diffusion for
domain alignment, unbiased pseudo-labeling with curriculum
learning, and consistency learning with graph jigsaw. Extensive
experiments demonstrate the effectiveness of GALA.

Future work: Our methods could be applied to heteroge-
neous graphs for complex real-world environments in future
work. In heterogeneous graphs, capturing intricate structural
and semantic information remains a challenge. In addition, the
diversity of node and edge types in heterogeneous graphs, each
potentially carrying different types of information, increases the
risk of information loss during the reconstruction process. These
challenges deserve further investigation.
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